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Abstract A hallmark of acute lung injury is the accumu-
lation of a protein rich edema which impairs gas exchange
and leads to hypoxemia. The resolution of lung edema is
effected by active sodium transport, mostly contributed by
apical Na+ channels and the basolateral located Na,K-
ATPase. It has been reported that the decrease of Na,K-
ATPase function seen during lung injury is due to its
endocytosis from the cell plasma membrane into intracellular
pools. In alveolar epithelial cells exposed to severe hypoxia,
we have reported that increased production of mitochondrial
reactive oxygen species leads to Na,K-ATPase endocytosis
and degradation. We found that this regulated process follows
what is referred as the Phosphorylation–Ubiquitination–
Recognition–Endocytosis–Degradation (PURED) pathway.
Cells exposed to hypoxia generate reactive oxygen species
which activate PKCζ which in turn phosphorylates the Na,K-
ATPase at the Ser18 residue in the N-terminus of the
α1-subunit leading the ubiquitination of any of the four
lysines (K16, K17, K19, K20) adjacent to the Ser18 residue.
This process promotes the α1-subunit recognition by the μ2
subunit of the adaptor protein-2 and its endocytosis trough a
clathrin dependent mechanism. Finally, the ubiquitinated Na,
K-ATPase undergoes degradation via a lysosome/proteasome
dependent mechanism.
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Alveolar epithelium

The Na,K-ATPase in the alveolar epithelium

The alveolar epithelium is covered by a thin layer of fluid
for maintenance of surface tension and host defense which
allows normal O2 and CO2 exchange (Weibel 1973). The
lining fluid is thought to reflect the balance between the
passive movement of fluid and solutes across the alveolar–
capillary barrier and the active transport of electrolytes
(Ware and Matthay 2000; Ng et al. 2004; Mutlu and
Sznajder 2005). Active vectorial Na+ transport in alveolar
epithelial cells is mediated by apical Na+ channels and
basolateral Na,K-ATPases resulting in alveolar fluid clear-
ance (Mason et al. 1982; Schneeberger and McCarthy
1986; Matalon et al. 1991; Matalon and O’Brodovich 1999;
Vadász et al. 2007). The alveolar epithelium is composed
of small, cuboidal type II cells and large, elongated type I
cells. Type I cells accounts for about 95%, while type II
cells for ~ 5%, of the alveolar surface area (Albertine et al.
2005). Although the two cell types have very different
functions, both contribute to alveolar fluid reabsorption
(Borok et al. 2002; Johnson et al. 2002; Ridge et al. 2003).
Two isoforms of the Na,K-ATPase α-subunit (α1 and α2)
and one isoform of the β-subunit (β1) are expressed in
alveolar epithelial cells, with the α1-subunit being
expressed in both cell types, while the α2-subunit appears
to be restricted to alveolar epithelial type I cells (Schneeberger
and McCarthy 1986; Ridge et al. 1997; Zhang et al. 1997;
Ridge et al. 2003).

Effects of acute lung injury on the Na,K-ATPase

Edema accumulation and impaired gas exchange are hall-
marks of acute lung injury (ALI) and the acute respiratory
distress syndrome (ARDS) (Ware and Matthay 2000).
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Edema accumulates due to changes in hydrostatic and
oncotic pressures as well as changes in the filtration and
reflection coefficient for proteins (Staub 1974). Many
models of ALI, hydrostatic pulmonary edema and patients
with ALI/ARDS are characterized by a decreased ability of
the lungs to clear edema (Ware and Matthay 2001; Mutlu
and Sznajder 2005; Vadász et al. 2007). Commonly in
models of ALI and increased left atrial pressures there is an
impairment of Na,K-ATPase function.

As such, it has been shown that in models of increased
left atrial pressures, alveolar fluid reabsorption is decreased
in parallel with a downregulation of Na,K-ATPase function
(Campbell et al. 1999; Azzam et al. 2001; Saldias et al. 2001).
Other models of ALI where there is a decreased function of
Na,K-ATPase activity include hyperoxia-, ventilation-,
endotoxin-, oleic acid- and alcohol-induced lung injury
(Olivera et al. 1995; Carter et al. 1997; Lecuona et al. 1999;
Adir et al. 2003; Koksel et al. 2005; Vadasz et al. 2005;
Aytacoglu et al. 2006; Koksel et al. 2006; Hirsch et al. 2007;
Mutlu et al. 2007).

This down-regulation of the Na,K-ATPase plays a
key role in lung injury models, as the decreased alveolar
fluid reabsorption can be over-come by increasing Na,K-
ATPase activity. This increase can be accomplished by
pharmacological means (i.e. cathecolamines such as
adrenergic or dopaminergic agonists) (Saldias et al. 1999;
Saldias et al. 2000; Azzam et al. 2001; Saldias et al. 2002;
Sartori et al. 2002) or Na,K-ATPase over-expression by
adenoviral or electroporation over-expression (Azzam et al.
2002; Adir et al. 2003; Mutlu et al. 2007).

Although, as stated above, impairment of Na,K-ATPase
activity has been found in a variety of acute lung injury
models, the mechanism by which this downregulation
occurs has not been fully elucidated. It is well established
that the Na,K-ATPase is subjected to both short- and long-
term regulation (Therien and Blostein 2000; Dunbar and
Caplan 2001; Clausen 2003; Dada et al. 2003). Short-term

regulation involves either 1) direct effects on the kinetics of
the enzyme, or 2) translocation of Na,K-ATPases between
the plasma membrane and intracellular stores (Ewart and
Klip 1995; Therien and Blostein 2000; Teixeira et al. 2003;
Bertorello and Sznajder 2005), while long term regulation
involves the transcription/translation pathways (Ewart and
Klip 1995; Clausen 2003).

The Na,K-ATPase is regulated
by the phosphorylation–ubiquitination–recognition–
endocytosis–degradation (PURED) mechanism
in alveolar epithelial cells

Alveolar hypoxia occurs during ascent to high altitudes and
in patients with ALI/ARDS (Sartori et al. 2002; Jain and
Sznajder 2005) and it is associated with decreased alveolar
fluid reabsorption and impaired Na,K-ATPase function
(Mairbaurl et al. 1997; Vivona et al. 2001; Litvan et al.
2006).

Studies exploring the mechanism of short-term Na,K-
ATPase regulation after hypoxia has been reported in
alveolar epithelial cells. Dada et al. described that alveolar
epithelial cells exposed to hypoxia (1.5% O2 for 1 h) have
decreased Na,K-ATPase activity due to a concomitant
reduction of the Na, K-ATPase protein present at the
plasma membrane, without changes in the total amount of
Na,K-ATPase protein, suggesting that endocytosis has
occured (Dada et al. 2003). Further studies lead to propose
that regulation of the Na,K-ATPase under hypoxia followed
what is called as the Phosphorylation–Ubiquitination–
Recognition–Endocytosis–Degradation or PURED path-
ways. As depicted in Fig. 1, PURED reflects a general
pathway for the internalization and degradation of cell
surface proteins that emerged from studies in yeast,
involving a series of events where phosphorylation acts as
a signal for ubiquitination, which leads to the endocytosis

Fig. 1 PURED pathway. The Na,K-ATPase follows the PURED
pathway under hypoxia conditions. PKCζ Phosphorylates the Na,K-
ATPase α1-subunit at the Ser18 with consequent Ubiquitination on
any of the four lysines surrounding this serine. This process makes

the protein available for Recognition by the adaptor protein-2 and its
Endocytosis via a clathrin-dependent mechanism that will lead to
the traffic of the protein to the lysosome for Degradation
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and degradation of the membrane protein (Hicke 1997;
Roth et al. 1998; Terrell et al. 1998; Kelm et al. 2004). The
same chain of events has been shown to be true in
mammalian membrane protein as well (Dada et al. 2003;
Haglund et al. 2003; Hicke and Dunn 2003; Comellas et al.
2006; Leithe and Rivedal 2007).

Phosphorylation The Na,K-ATPase α1-subunit has several
consensus phosphorylation sites (Beguin et al. 1994) and
phosphorylation/dephosphorylation has been proposed in
the regulation of the Na,K-ATPase trafficking between
intracellular compartments (Pedemonte et al. 2005). In
particular, phosphorylation at the Ser18 in the N-terminus
domain of the Na,K-ATPase α1-subunit has been shown to
modulate its endocytosis (Chibalin et al. 1998; Chibalin
et al. 1999). In alveolar epithelial cells exposed to hypoxia
(1.5% O2 for 1 h), endocytosis of the Na,K-ATPase was
associated with phosphorylation in the Ser18 residue by the
atypical PKCζ, which was shown to be activated by
hypoxia generated reactive oxygen species (ROS) (Dada
et al. 2003).

Ubiquitination Ubiquitination is a dynamic and reversible
process, where proteins are tagged by the 76-amino acid
globular protein ubiquitin. Tagging results in covalent
conjugation of ubiquitin to the target protein and it is
essential for the proteolysis of most proteins, during
both constitutive degradation and degradation as a result
of changes in the cellular environment (Glickman and
Ciechanover 2002). Conjugation of ubiquitin to a protein
can also regulate its activity or location (Hicke 1997;
Glickman and Ciechanover 2002; Haglund et al. 2003). A
role for ubiquitination of the Na,K-ATPase α1-subunit in its
endocytosis and degradation was proposed by Coppi and
Guidotti (1997), although first direct evidence was provided
in the hypoxia-induced Na,K-ATPase system (Comellas
et al. 2006; Dada et al. 2007). In these reports it was shown
that alveolar epithelial cells exposed to 1.5% O2 have
increased Na,K-ATPase-ubiquitin conjugates at the plasma
membrane and by mutating four lysines at the N-terminus
of the Na,K-ATPase α1-subunit (K16-17-19-20), they
demonstrated the requirement of ubiquitination in the
hypoxia-induced endocytosis and degradation. More impor-
tantly, phosphorylation of Ser18 was demonstrated to be
necessary for ubiquitination to occur, demonstrating that
this is a sequencial process part of the PURED system.

Recognition and endocytosis The traffic from different
intracellular compartments of eukaryotic cells involves the
self-assembly of multilayered cytosolic coat scaffolds
(Stagg et al. 2007). These scaffolds include clathrin, coat
protein complex I (COPI) and coat protein complex II
(COPII). Adaptor protein (AP) complexes link different

types of cargo with these proteins that can self-assemble as
a lattice to form a scaffold that collects and concentrates
AP-cargo complexes into membrane patches (Stagg et al.
2007). The endocytosis of the Na,K-ATPase is a clathrin-
coated mediated mechanism, dependent on the phosphory-
lation of the Ser18 residue and binding of the μ2-subunit of
adaptor protein 2 (AP-2) to the Y537LEL motif of the Na,K-
ATPase α1-subunit (Done et al. 2002). This mechanism of
recognition is shared by the hypoxia-induced Na,K-ATPase
endocytosis, as alveolar epithelial cells expressing a Na,K-
ATPase α1-subunit mutation in the AP-2 recognition
binding site (Y537A) failed to undergo endocytosis (Chen
et al. 2006).

Degradation Lysosome and proteasome are the organelles
where the degradation of proteins occurs (Reinstein and
Ciechanover 2006). Plasma membrane proteins, such as the
Na,K-ATPase are thought to be degraded by the lysosome
with ubiquitination playing a role in the endocytotic
pathway (Piper and Luzio 2007). Inhibitors of both,
lysosome and proteasome, prevented the degradation of
the plasma membrane associated Na,K-ATPase in alveolar
epithelial cells during hypoxia (Comellas et al. 2006),
which suggests that ubiquitination of the Na,K-ATPase is
necessary for its endocytosis and traffic to the lysosome
where it is degraded.

Conclusions

In summary, during acute lung injury, alveolar fluid
reabsorption is impaired in part due to inhibition of Na,K-
ATPase activity via its regulated endocytosis. In hypoxia
induced alveolar epithelial cell dysfunction we propose a
model (Fig. 1) where activation of atypical PKCζ induces
the phosphorylation of the Na,K-ATPase α1-subunit at the
Ser18 with consequent ubiquitination on any of the four
lysines surrounding this residue (Ser18). This process
makes the protein available for recognition by the adaptor
protein-2 and its endocytosis via a clathrin-dependent
mechanism that will lead to the traffic of the protein to
the lysosome for degradation.

Acknowledgment Supported in part by: HL48129 and PO1-HL71643.

References

Adir Y, Factor P, Dumasius V, Ridge KM, Sznajder JI (2003) Na,K-
ATPase gene transfer increases liquid clearance during ventilation-
induced lung injury. Am J Respir Crit Care Med 168:1445–1448

J Bioenerg Biomembr (2007) 39:391–395 393393



Albertine K, Williams M, Hyde D (2005) Anatomy of the lungs.
Murray and Nadel’s textbook of respiratory medicine Edited by
Mason and Broaddus

Aytacoglu B, Calkoglu M, Tamer L, Coskun B, Sucu N, Köse N,
Aktas S, Dikmengil M (2006) Alcohol-induced lung damage and
increased oxidative stress. Respiration 73:100–104

Azzam ZS, Saldias FJ, Comellas A, Ridge KM, Rutschman DH,
Sznajder JI (2001) Catecholamines increase lung edema clear-
ance in rats with increased left atrial pressure. J Appl. Physiol
90:1088–1094

Azzam ZS, Dumasius V, Saldias FJ, Adir Y, Sznajder JI, Factor P
(2002) Na,K-ATPase overexpression improves alveolar fluid
clearance in a rat model of elevated left atrial pressure.
Circulation 105:497–501

Beguin P, Beggah A, Chibalin A, Burgener-Kairuz P, Jaisser F,
Mathews P, Rossier B, Cotecchia S, Geering K (1994) Phos-
phorylation of the Na,K-ATPase alpha-subunit by protein kinase
A and C in vitro and in intact cells. Identification of a novel motif
for PKC-mediated phosphorylation. J Biol Chem 269:24437–
24445

Bertorello A, Sznajder JI (2005) The dopamine paradox in lung and
kidney epithelia. Sharing the same target but operating different
signaling networks. Am J Respir Cell Mol Biol 33:432–437

Borok Z, Liebler JM, Lubman RL, Foster MJ, Zhou B, Li X, Zabski
SM, Kim KJ, Crandall ED (2002) Na transport proteins are
expressed by rat alveolar epithelial type I cells. Am J Physiol
Lung Cell Mol Physiol 282:L599–L608

Campbell AR, Folkesson HG, Berthiaume Y, Gutkowska J, Suzuki S,
Matthay MA (1999) Alveolar epithelial fluid clearance persists in
the presence of moderate left atrial hypertension in sheep. J Appl
Physiol 86:139–151

Carter EP, Wangensteen OD, O’Grady SM, Ingbar DH (1997) Effects
of hyperoxia on type II cell Na-K-ATPase function and
expression. Am J Physiol 272:L542–L551

Chen Z, Krmar RT, Dada L, Efendiev R, Leibiger IB, Pedemonte CH,
Katz AI, Sznajder JI, Bertorello AM (2006) Phosphorylation of
adaptor protein-2 {micro}2 is essential for Na+,K+-ATPase
endocytosis in response to either G protein-coupled receptor or
reactive oxygen species. Am J Respir Cell Mol Biol 35:127–132

Chibalin AV, Pedemonte CH, Katz AI, Feraille E, Berggren PO,
Bertorello AM (1998) Phosphorylation of the catalytic a-subunit
constitutes a triggering signal for Na+,K+-ATPase endocytosis. J
Biol Chem 273:8814–8819

Chibalin AV, Ogimoto G, Pedemonte CH, Pressley TA, Katz AI,
Feraille E, Berggren PO, Bertorello AM (1999) Dopamine-
induced endocytosis of Na+,K+-ATPase is initiated by phosphor-
ylation of Ser-18 in the rat a subunit and is responsible for the
decreased activity in epithelial cells. J Biol Chem 274:1920–1927

Clausen T (2003) Na+-K+ pump regulation and skeletal muscle
contractility. Physiol Rev 83:1269–1324

Comellas AP, Dada LA, Lecuona E, Pesce LM, Chandel NS, Quesada
N, Budinger GRS, Strous GJ, Ciechanover A, Sznajder JI (2006)
Hypoxia-mediated degradation of Na,K-ATPase via mitochon-
drial reactive oxygen species and the ubiquitin-conjugating
system. Circ Res 98:1314–1322

Coppi MV, Guidotti G (1997) Ubiquitination of Na,K-ATPase [alpha]
1 and [alpha]2 subunits. FEBS Letters 405:281–284

Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM,
Sznajder JI (2003) Hypoxia-induced endocytosis of Na,K-
ATPase in alveolar epithelial cells is mediated by mitochondrial
reactive oxygen species and PKC-{zeta}. J Clin Invest
111:1057–1064

Dada LA, Welch LC, Zhou G, Ben-Saadon R, Ciechanover A,
Sznajder JI (2007) Phosphorylation and ubiquitination are
necessary for Na,K-ATPase endocytosis during hypoxia. Cell
Signal 19:1893–1898

Done SC, Leibiger IB, Efendiev R, Katz AI, Leibiger B, Berggren
P-O, Pedemonte CH, Bertorello AM (2002) Tyrosine 537 within
the Na+,K+-ATPase alpha-subunit is essential for AP-2 binding
and clathrin-dependent endocytosis. J Biol Chem 277:17108–
17111

Dunbar LA, Caplan MJ (2001) Ion pumps in polarized cells: sorting
and regulation of the Na+,K+-and H+,K+-ATPases. J Biol Chem
276:29617–29620

Ewart HS, Klip A (1995) Hormonal regulation of the Na+-K+-
ATPase: mechanisms underlying rapid and sustained changes in
pump activity. Am J Physiol 269:C295–C311

Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome
proteolytic pathway: destruction for the sake of construction.
Physiol Rev 82:373–428

Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin
signals in receptor endocytosis. Trends Biochem Sci 28:598–604

Hicke L (1997) Ubiquitin-dependent internalization and down-
regulation of plasma membrane proteins. Faseb J 11:1215–1226

Hicke L, Dunn R (2003) Regulation of membrane protein transport by
ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev
Biol 19:141–172

Hirsch J, Hansen KC, Sapru A, Frank JA, Chalkley RJ, Fang X,
Trinidad JC, Baker P, Burlingame AL, Matthay MA (2007)
Impact of low and high tidal volumes on the rat alveolar
epithelial type II cell proteome. Am J Respir Crit Care Med
175:1006–1013

Jain M, Sznajder JI (2005) Effects of hypoxia on the alveolar
epithelium. Proc Am Thorac Soc 2:202–205

Johnson MD, Widdicombe JH, Allen L, Barbry P, Dobbs LG (2002)
Alveolar epithelial type I cells contain transport proteins and
transport sodium, supporting an active role for type I cells in
regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A
99:1966–1971

Kelm KB, Huyer G, Huang JC, Michaelis S (2004) The internalization
of yeast step6 follows an ordered series of events involving
phosphorylation, ubiquitination, recognition and endocytosis.
Traffic 5:165–180

Koksel O, Kaplan MB, Ozdulger A, Tamer L, Degirmenci U, Cinel L,
Basturk M, Kanik A (2005) Oleic acid-induced lung injury in rats
and effects of caffeic acid phenet hyl ester. Exp Lung Res
31:483–496

Koksel O, Ozdulger A, Tamer L, Cinel L, Ercil M, Degirmenci U,
Unlu S, Kanik A (2006) Effects of caffeic acid phenethyl ester on
lipopolysaccharide-induced lung injury in rats. Pulm Pharmacol
Ther 19:90–95

Lecuona E, Saldias F, Comellas A, Ridge K, Guerrero C, Sznajder JI
(1999) Ventilator-associated lung injury decreases lung ability to
clear edema in rats. Am J Respir Crit Care Med 159:603–609

Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J
Membr Biol DOI 10.1007/s00232-007-9050-z

Litvan J, Briva A, Wilson MS, Budinger GRS, Sznajder JI, Ridge KM
(2006) Beta-adrenergic receptor stimulation and adenoviral
overexpression of superoxide dismutase prevent the hypoxia-
mediated decrease in Na,K-ATPase and alveolar fluid reabsorp-
tion. J Biol Chem 281:19892–19898

Mairbaurl H, Wodopia R, Eckes S, Schulz S, Bartsch P (1997)
Impairment of cation transport in A549 cells and rat alveolar
epithelial cells by hypoxia. Am J Physiol 273:L797–806

Mason R, Williams M, Widdicombe J, Sanders M, Misfeldt D, Berry
LJ (1982) Transepithelial transport by pulmonary alveolar type
II cells in primary culture. Proc Natl Acad Sci U S A 79:6033–
6037

Matalon S, O’Brodovich H (1999) Sodium channels in alveolar
epithelial cells: molecular characterization, biophysical proper-
ties, and physiological significance. Annu Rev Physiol 61:627–
661

394 J Bioenerg Biomembr (2007) 39:391–395

http://dx.doi.org/10.1007/s00232-007-9050-z


Matalon S, Bridges RJ, Benos DJ (1991) Amiloride-inhibitable Na+
conductive pathways in alveolar type II pneumocytes. Am J
Physiol 260:L90–96

Mutlu GM, Sznajder JI (2005) Mechanisms of pulmonary edema
clearance. Am J Physiol Lung Cell Mol Physiol 289:L685–L695

Mutlu GM, Machado-Aranda D, Norton JE, Bellmeyer A, Urich D,
Zhou R, Dean DA (2007) Electroporation-mediated gene transfer
of the Na+,K+-ATPase rescues endotoxin-induced lung injury.
Am J Respir Crit Care Med 176:582–590

Ng AW, Bidani A, Heming TA (2004) Innate host defense of the lung:
effects of lung-lining fluid pH. Lung 182:297–317

Olivera WG, Ridge KM, Sznajder JI (1995) Lung liquid clearance and
Na,K-ATPase during acute hyperoxia and recovery in rats. Am J
Respir Crit Care Med 152:1229–1234

Pedemonte CH, Efendiev R, Bertorello A (2005) Inhibition of Na,K-
ATPase by dopamine in proximal tubule epithelial cells. Semin
Nephrol 25:322–327

Piper RC, Luzio JP (2007) Ubiquitin-dependent sorting of integral
membrane proteins for degradation in lysosomes. Curr Opin Cell
Biol 19:459–465

Reinstein E, Ciechanover A (2006) Narrative review: protein
degradation and human diseases: the ubiquitin connection. Ann
Intern Med 145:676–684

Ridge K, Rutschman D, Factor P, Katz A, Bertorello A, Sznajder J
(1997) Differential expression of Na-K-ATPase isoforms in rat
alveolar epithelial cells. Am J Physiol 273:L246–L255

Ridge KM, Olivera WG, Saldias F, Azzam Z, Horowitz S, Rutschman
DH, Dumasius V, Factor P, Sznajder JI (2003) Alveolar type 1
cells express the a2 Na,K-ATPase which contributes to lung
liquid clearance. Circulation Res 92:453–460

Roth AF, Sullivan DM, Davis NG (1998) A large PEST-like sequence
directs the ubiquitination, endocytosis, and vacuolar degradation
of the yeast a-factor receptor. J Cell Biol 142:949–961

Saldias FJ, Comellas A, Ridge KM, Lecuona E, Sznajder JI (1999)
Isoproterenol improves ability of lung to clear edema in rats
exposed to hyperoxia. J Appl Physiol 86:30–35

Saldias FJ, Lecuona E, Comellas AP, Ridge KM, Rutschman DH,
Sznajder JI (2000) b-Adrenergic stimulation restores rat lung
ability to clear edema in ventilator-associated lung injury. Am J
Respir Crit Care Med 162:282–287

Saldias FJ, Azzam ZS, Ridge KM, Yeldandi A, Rutschman DH,
Schraufnagel D, Sznajder JI (2001) Alveolar fluid reabsorption is
impaired by increased left atrial pressures in rats. Am J Physiol
Lung Cell Mol Physiol 281:L591–597

Saldias FJ, Comellas AP, Pesce L, Lecuona E, Sznajder JI (2002)
Dopamine increases lung liquid clearance during mechanical
ventilation. Am J Physiol Lung Cell Mol Physiol 283:L136–143

Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter
D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U (2002)
Salmeterol for the prevention of high-altitude pulmonary edema.
N Engl J Med 346:1631–1636

Schneeberger EE, McCarthy KM (1986) Cytochemical localization of
Na+-K+-ATPase in rat type II pneumocytes. J Appl Physiol
60:1584–1589

Stagg SM, LaPointe P, Balch WE (2007) Structural design of cage and
coat scaffolds that direct membrane traffic. Curr Opin Struck Biol
17:221–228

Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811
Teixeira VL, Katz AI, Pedemonte CH, Bertorello AM (2003) Isoform-

specific regulation of Na+,K+-ATPase endocytosis and recruit-
ment to the plasma membrane. Ann N.Y. Acad Sci 986:587–594

Terrell J, Shih S, Dunn R, Hicke L (1998) A function for
monoubiquitination in the internalization of a G protein-coupled
receptor. Mol Cell 1:193–202

Therien AG, Blostein R (2000) Mechanisms of sodium pump
regulation. Am J Physiol Cell Physiol 279:C541–566

Vadasz I, Morty RE, Kohstall MG, Olschewski A, Grimminger F,
Seeger W, Ghofrani HA (2005) Oleic acid inhibits alveolar fluid
reabsorption: a role in acute respiratory distress syndrome? Am J
Respir Crit Care Med 171:469–479

Vadász I, Raviv S, Sznajder J (2007) Alveolar epithelium and Na,
K-ATPase in acute lung injury. Intensive Care Med 33:1243–
1251

Vivona ML, Matthay M, Chabaud MB, Friedlander G, Clerici C
(2001) Hypoxia reduces alveolar epithelial sodium and fluid
transport in rats. reversal by beta-adrenergic agonist treatment.
Am J Respir Cell Mol Biol 25:554–561

Ware LB, Matthay MA (2000) The acute respiratory distress
syndrome. N Engl J Med 342:1334–1349

Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in
the majority of patients with acute lung injury and the acute
respiratory distress syndrome. Am J Respir Crit Care Med
163:1376–1383

Weibel ER (1973) Morphological basis of alveolar-capillary gas
exchange. Physiol Rev 53:419–495

Zhang XL, Danto SI, Borok Z, Eber JT, Martin-Vasallo P, Lubman RL
(1997) Identification of Na(+)-K(+)-ATPase beta-subunit in
alveolar epithelial cells. Am J Physiol 272:L85–94

J Bioenerg Biomembr (2007) 39:391–395 395395


	Regulation of Na,K-ATPase during acute lung injury
	Abstract
	The Na,K-ATPase in the alveolar epithelium
	Effects of acute lung injury on the Na,K-ATPase
	The Na,K-ATPase is regulated by the phosphorylation–ubiquitination–recognition–endocytosis–degradation (PURED) mechanism in alveolar epithelial cells
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


